推广 热搜: 作文  学习方法  初中学习方法  方法  语文  高中学习方法  励志  小学  中考  各学科学习方法 

初三上册数学辅导复习提纲

   日期:2020-07-15     来源:www.zhixueshuo.com    作者:智学网    浏览:796    评论:0    
核心提示:这篇关于初三上册数学辅导复习提纲的文章,是无忧考网特地为大伙收拾的,期望对大伙有所协助!  第二单元一元二次方程  一、

这篇关于初三上册数学辅导复习提纲的文章,是无忧考网特地为大伙收拾的,期望对大伙有所协助!

  第二单元一元二次方程

  一、一元二次方程

  1、一元二次方程

  含有一个未知数,并且未知数的次数是2的整式方程叫做一元二次方程。

  2、一元二次方程的一般形式

  ,它的特点是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。

  二、一元二次方程的解法

  1、直接开平办法

  借助平方根的概念直接开平方求一元二次方程的解的办法叫做直接开平办法。直接开平办法适用于解形如的一元二次方程。依据平方根的概念可知,是b的平方根,当时,,,当b<0时,方程没有实数根。

  2、配办法

  配办法是一种要紧的数学办法,它不仅在解一元二次方程上有所应用,而且在数学的其他范围也有着广泛的应用。配办法的理论依据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。

  3、公式法

  公式法是用求根公式解一元二次方程的解的办法,它是解一元二次方程的一般办法。

  一元二次方程的求根公式:

  4、因式分解法

  因式分解法就是借助因式分解的方法,求出方程的解的办法,这种办法容易易行,是解一元二次方程最常见的办法。

  三、一元二次方程根的判别式

  根的判别式

  一元二次方程中,叫做一元二次方程的根的判别式,一般用“”来表示,即

  四、一元二次方程根与系数的关系

  假如方程的两个实数根是,那样,。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  第三单元旋转

  一、旋转

  1、概念

  把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。

  2、性质

  (1)对应点到旋转中心的距离相等。

  (2)对应点与旋转中心所连线段的夹角等于旋转角。

  二、中心对称

  1、概念

  把一个图形绕着某一个点旋转180°,假如旋转后的图形可以和原来的图形互相重合,那样这个图形叫做中心对称图形,这个点就是它的对称中心。

  2、性质

  (1)关于中心对称的两个图形是全等形。

  (2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

  (3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

  3、判定

  假如两个图形的对应点连线都经过某一点,并且被这一点平分,那样这两个图形关于这一点对称。

  4、中心对称图形

  把一个图形绕某一个点旋转180°,假如旋转后的图形可以和原来的图形互相重合,那样这个图形叫做中心对称图形,这个店就是它的对称中心。

  考点五、坐标系中对称点的特点(3分)

  1、关于原点对称的点的特点

  两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)

  2、关于x轴对称的点的特点

  两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)

  3、关于y轴对称的点的特点

  两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)

  第四单元圆

  一、圆的有关定义

  1、圆的概念

  在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

  2、圆的几何表示

  以点O为圆心的圆记作“⊙O”,读作“圆O”

  二、弦、弧等与圆有关的概念

  (1)弦

  连接圆上任意两点的线段叫做弦。(如图中的AB)

  (2)直径

  经过圆心的弦叫做直径。(如途中的CD)

  直径等于半径的2倍。

  (3)半圆

  圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

  (4)弧、优弧、劣弧

  圆上任意两点间的部分叫做圆弧,简称弧。

  弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。

  大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)

  三、垂径定理及其推论

  垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

  推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

  (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

  (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

  推论2:圆的两条平行弦所夹的弧相等。

  垂径定理及其推论可概括为:

  过圆心

  垂直于弦

  直径平分弦知二推三

  平分弦所对的优弧

  平分弦所对的劣弧

  四、圆的对称性

  1、圆的轴对称性

  圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

  2、圆的中心对称性

  圆是以圆心为对称中心的中心对称图形。

  五、弧、弦、弦心距、圆心角之间的关系定理

  1、圆心角

  顶点在圆心的角叫做圆心角。

  2、弦心距

  从圆心到弦的距离叫做弦心距。

  3、弧、弦、弦心距、圆心角之间的关系定理

  在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。

  推论:在同圆或等圆中,假如两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那样它们所对应的其余各组量都分别相等。

  六、圆周角定理及其推论

  1、圆周角

  顶点在圆上,并且两边都和圆相交的角叫做圆周角。

  2、圆周角定理

  一条弧所对的圆周角等于它所对的圆心角的一半。

  推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

  推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

  推论3:假如三角形一边上的中线等于这边的一半,那样这个三角形是直角三角形。

 
标签: 初中三年级
打赏
 
更多>智慧教育相关文章
0相关评论

推荐图文
推荐智慧教育
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报
乐课网-智学网在线教育平台